Preparation of ortho-Eugenol, a Synthetic Vanilloid Fragrance

Introduction [1,2]

Eugenol and ortho-eugenol belong to a class of compounds called vanilloids. Eugenol is a natural product extracted from the flower buds of an evergreen tropical tree, Eugenia aromatica or clove tree, a native of Southeast Asia. At harvest, the unopened buds are hand-picked from the tree and sun-dried. The dry cloves contain between 14 and 20% of essential oil, the principal component of which is eugenol and its acetyl derivative. Cloves are strongly pungent owing to eugenol, which is extracted by steam distillation to yield oil of cloves. Eugenol is used in germicides, perfumes, and mouthwashes, in the synthesis of vanillin, and as a sweetener or intensifier. ortho-Eugenol is a synthetic isomer of eugenol used in the fragrance industry. In addition to eugenol, vanillin (from vanilla beans), ethyl vanillin (artificial vanillin), capsaicin (the hot spice in chili peppers), and zingerone (extracted from ginger) are other common vanilloids. All these compounds have distinct characteristic flavors but their structures present close similarities. They all contain a benzene ring. Subtle changes in the sizes or positions of groups of atoms attached to the ring dramatically change the compound's flavor, as illustrated by the following examples.

Vanillin

vanilla pods Vanillin has a soothing, pleasant aroma. Its molecular weight is relatively low, and it is fairly volatile. Cooking with vanilla vaporizes some of the vanillin molecules and fills the room with its aroma. Molecules containing only carbon and hydrogen are mostly insoluble in water. The oxygen-containing groups attached to the ring in vanillin can form strong hydrogen bonds with water, making it water soluble (about a gram of vanillin can be dissolved in 100 mL of cold water). Vanillin's solubility in water is responsible for the "finish" acquired by wines aged in oak casks. Vanilla present in the wood lignin of the wine barrels slowly leaches into the wine over time.

Eugenol

Although eugenol is practically insoluble in water, it freely mixes with fats and oils. Its fat solubility allows it to penetrate tissues and bind more tightly to the vanilloid receptor, which is believed to have a fatty side chain. The tail gives eugenol a stronger odor than vanillin has. More than one or two ground cloves overpower a pumpkin pie. Eugenol has a numbing, analgesic effect. It is used as a dental antiseptic (it's one component of that strange smell some dentist's offices have). Why is the molecule an antiseptic? Apparently the hydrocarbon tail in combination with the polar functional group on the ring make eugenol rather soap-like, and it can disrupt the cell membranes of bacteria the way soap disrupts a spot of grease.clove buds

Zingerone

ginger root Zingerone puts the zing in ginger and is also a flavor ingredient in mustard oil. The hydrocarbon tail attached to its vanillin foundation ring doesn't lower the solubility of zingerone much because it contains a carbonyl group that can form strong hydrogen bonds with water molecules. Zingerone is sparingly soluble in water, but also freely soluble in fats and oils. The higher molecular weight of zingerone in combination with the polar side-chain carbonyl group makes zingerone molecules attract each other more strongly than eugenol and vanillin molecules do. As a result, zingerone is less volatile than either eugenol or vanillin. The odor of ginger isn't strong, but the hydrocarbon tail gives it a more intense flavor when it does come into contact with its receptor.

Reaction Scheme

reaction scheme

Experimental [3]

Intermediate

In a dry 250 mL round-bottomed flask equipped with a magnetic stirring bar and a reflux condenser fitted with a calcium chloride guard tube, introduce guaiacol (31.1 g), 3-bromo-1-propene (31 g), anhydrous potassium carbonate (34.6 g), and dry 2-propanol (50 mL). Reflux the mixture for 8 h then bring it back to room temperature and add water (100 mL). Stir well until all the solids are dissolved and transfer the biphasic mixture into a separatory funnel. Separate the organic layer and extract twice the aqueous layer with diethyl ether (2 x 50 mL). Gather together the 3 organic phases and wash them twice with 10% aqueous sodium hydroxide (2 x 50 mL), then with water until pH is neutral. Dry the etheral solution over anhydrous potassium carbonate and remove the solvents on a rotary evaporator. Distill the residue under reduced pressure to obtain the pure intermediate as a pale yellow oil (b.p. 117-118 deg.C/19 mm Hg). Typical yield is 80%.

ortho-Eugenol

Place 30 g of the intermediate obtained from the previous step in a 100 mL round-bottomed flask equipped with a reflux condenser. Heat progressively (the reaction is slightly exothermic) until a steady reflux is achieved. Maintain the reflux for 1 h then cool down to room temperature and dilute the reaction mixture with diethyl ether (50 mL). Transfer the etheral solution into a separatory funnel and extract it thrice with 10% aqueous sodium hydroxide (3 x 50 mL). Gather together the 3 aqueous phases and slowly add 18% hydrochloric acid until pH 1. Extract thrice the acidic aqueous solution with diethyl ether (3 x 25 mL). Gather together the 3 organic phases, dry them with anhydrous sodium sulfate, and remove the solvents on a rotary evaporator. Distill the residue under reduced pressure to obtain pure ortho-eugenol (b.p. 123-125 deg.C/19 mm Hg). Typical yield is 72%.

Functional Group Tests [4]

Bromine Test

Mix 5 drops of compound and 1 mL of dichloromethane into a small test tube. Add one drop of a 2% bromine solution in dichloromethane to the tube and observe the results. A positive test is indicated by the disappearance of the red-brown color of the bromine.

Ferric Chloride Test

Mix 5 drops of compound and 1 mL of methanol into a small test tube. Add one drop of neutral 1% iron(III) chloride solution in water, stopper, shake, and observe the results. A positive test is indicated by the formation of a highly colored solution, usually purple, blue, or green, although other colors are possible depending upon the identity of the substituents.

Bibliography

[1] F. Senese, "Fire and Spice", In: General Chemistry Online! (http://antoine.fsu.umd.edu/chem/senese/101/index.shtml)

[2] K. L. Williamson, Macroscale and Microscale Organic Experiments, 2nd ed., D. C. Heath: Lexington (Massachusetts), 1994, 106-107.

[3] M. Chavanne, A. Jullien, G. J. Beaudoin, E. Flamand, Chimie organique expérimentale, Modulo: Mont-Royal (Québec), 1986, 751-756.

[4] B. S. Furniss, A. J. Hannaford, P. W. G. Smith, A. R. Tatchell, Vogel's Textbook of Practical Organic Chemistry, 5th ed., Longman: Harlow, 1989, 1213 and 1226.


 

Nom : .............................

Prénom : ..........................

Sart-Tilman, le 9 novembre 2001

 

 

Seconde licence en sciences chimiques 2001-2002

Chimie organique

Interrogation de travaux pratiques

 

 

Sur base du schéma réactionnel et des modes opératoires ci-joints, répondez de façon brève, claire et précise aux questions suivantes.
Vos réponses doivent se trouver uniquement dans les espaces prévus à cet effet, sur les faces recto des feuilles. Les faces verso peuvent être utilisées comme brouillons.

 

 

Thème I. Nomenclature chimique:

1) Donnez le nom systématique du gaïacol. (1 point)

Réponse

2) Donnez le nom usuel du 3-bromo-1-propène. (1 point)

Réponse

3) Donnez le nom usuel du 2-propanol. (1 point)

Réponse

Thème II. Analyse du schéma réactionnel:

4) La réaction du gaïacol avec le 3-bromo-1-propène est-elle plus probablement de type SN1 ou SN2? Justifiez votre réponse. (3 points)

Réponse

5) L'intermédiaire se réarrange en ortho-eugénol par sigmatropie [3,3]. Proposez un mécanisme pour cette transformation. Indiquez clairement sur votre schéma les structures de l'intermédiaire et de l'ortho-eugénol. La réaction porte un nom spécifique, mentionnez-le dans votre schéma. (4 points)

Réponse

Thème III. Analyse du mode opératoire:

6) Dans la synthèse de l'intermédiaire, quel est le but des lavages avec la solution d'hydroxyde de sodium? (3 points)

Réponse

7) Quelle température (approximative) faudra-t-il atteindre pour porter le mélange réactionnel à reflux dans la synthèse de l'ortho-eugénol? Justifiez votre réponse. (2 points)

abaque

8) Quel moyen de chauffage disponible au laboratoire utiliseriez-vous pour atteindre et maintenir le reflux discuté à la question précédente. Justifiez votre réponse. (2 points)

Réponse

9) Quelle source de vide disponible au laboratoire utiliseriez-vous pour effectuer la distillation de l'intermédiaire et de l'ortho-eugénol? Justifiez votre réponse. (2 points)

Réponse

10) Dans la synthèse de l'ortho-eugénol, quel est le but des extractions avec la solution d'hydroxyde de sodium? Pour étayer votre réponse, complétez le diagramme suivant en indiquant la composition en matières organiques et inorganiques des diverses phases (4 points)

tableau

Thème IV. Tests de caractérisation:

11) Quel(s) groupement(s) fonctionnel(s) le test au brome permet-il de détecter? Justifiez votre réponse. (2 points)

Réponse

12) Proposez un réactif inorganique permettant de détruire le brome. Écrivez l'équation moléculaire équilibrée de la réaction. (2 points)

Réponse

13) Quel(s) groupement(s) fonctionnel(s) le test au chlorure ferrique permet-il de détecter? Justifiez votre réponse. (2 points)

Réponse

14) Complétez le tableau suivant en indiquant par un signe + les tests qui donneront un résultat positif et par un signe - ceux qui donneront un résultat négatif. (1 point)

Tableau


Retour au sommaire des interrogations        Retour au sommaire de /licence/